2.32 Requirements Analysis And Specification

Software Engineering 2.31

REQUIREMENTS ANALYSIS AND SPECIFICATION
2.1 INTRODUCTION
IEEE defines a requirement as

1 A condition or capability needed by a user to solve a problem (or) achieve an objective.

2 A condition (or) a capability that must be met (or) possessed by a system to fulfill a contract.
The description of services and constraints are the requirements for the system and the process of finding out, analysis, documenting and checking these services and constraints is called requirement engineering.
Different types of requirements User Requirements

User requirements are statements in a natural language plus diagrams of what service the system is expected to provide and the constraints under which it must operate.

The readers of user requirements are client managers, system end - user, client engineers, contractor managers and system architects.

System Requirements

System requirements set out the system services and constraints in detail. The system requirement document (or) functional requirement should be precise. It may serve as a contract between the system buyer and software developer.

The reader of the system requirements are system end users, client engineers, system architects and software developers.

A structured document sets out detailed descriptions of the system’s functions, services and operational constraints. It defines what should be implemented so that they may become a part of contract between client and contractor.

Software Design Specification

A software design specification is an abstract description of the software design which forms a basis for more detailed design and implementation.

The readers of software design specification requirements constitute system architects and software developers.

2.1.1 FUNCTIONAL & NON-FUNCTIONAL REQUIREMENTS
Software system requirements are often classified as functional (or) non-functional requirements (or) as domain requirements.
Functional Requirements
These are statements of services the system should provide, the manner in which the system should react to particular input and how the system should behave in a given situation. In some cases, it also specifies what the system should not do.

Non-Functional Requirements

They represent the constraints placed on the services (or) functions offered by the system. It includes timing constraints, constraints on the development process, standards etc.
Domain Requirements

These are requirements that were from the application domain of the system and that reflect characteristics of that domain. It may be functional (or) non-functional requirements.
Functional requirements

· Describe functionality or system services

· Depend on the type of software, expected users and the type of system where the software is used

· Functional user requirements may be high-level statements of what the system should do but functional system requirements should describe the system services in detail
Examples of functional requirements

A library system LIBSYS provides a single interface to a number of databases of articles in different libraries. Users can search for, download and print these articles for personal study.

· The user shall be able to search either all of the initial set of databases or select a subset from it.

· The system shall provide appropriate viewers for the user to read documents in the document store.

· Every order shall be allocated a unique identifier (ORDER_ID) which the user shall be able to copy to the account’s permanent storage area.

For example: For a system printing weekly paychecks, the functional requirement must answer the following questions:

1. What input is necessary for a paycheck to be printed?

2. Under what conditions the amount of pay can be changed?

3. What causes the removal of an employee from the payroll list?
In principle, the functional requirement specification of a system should be
Complete:
i.e. all the services required by user should be defined.
Consistent: the requirements should not have contradicting definitions.

In practice, for large, complex systems it is practically impossible to achieve requirements that are consistent and complete. The reason for this is partly because of the inherent system complexity and partly because different viewpoints have inconsistent needs.
2.1.2 Non-Functional Requirements
These are requirements which are not directly concerned with the specific functions delivered by the system. They may relate to emergent system properties such as reliability, response time and store occupancy. Alternatively, they may define constraints on the system such as the capabilities of input devices and output devices data representations used in system interfaces.

They relate to the system as a whole rather than to individual system features which mean that they are more critical than the individual functional requirements.

While failure to meet an individual functional requirement may degrade the system, failure to meet a non-functional system requirement may make the whole system unusable. Non-functional requirements are not always concerned with the software system to be developed.

· Define system properties and constraints e.g. reliability, response time and storage requirements. Constraints are I/O device capability, system representations, etc.
· Process requirements may also be specified mandating a particular CASE system, programming language or development method
· Non-functional requirements may be more critical than functional requirements. If these are not met, the system is useless

1. Product Requirements
Requirements which specify that the product must correspond to the requirements intems of speed, reliability, etc.

Examples

Performance Requirements - how the system must execute and how much memory it requires.

Reliability Requirements - set out the acceptable failure rate.

2. Organizational requirements
These requirements are derived from policies and procedures laid down by the customers and developers organization (eg.)It includes process standards which must be used. Implementation requirements such as the programming language (or) design method used. Delivery requirements must specify when the product and its documentation are to be delivered.

· Requirements which are a consequence of organisational policies and procedures e.g. process standards used, implementation requirements, etc.

[image: image1.emf]
Fig. 2.1 Types of Non-Functional Requirements

3. External
Requirements
These are all requirements which are derived from factors external to the system and its development process.
An interoperability requirement defines how the system interacts with systems in other organizations.

Legislative requirements which must be followed to ensure that the system operates within the law and ethical requirements

Ethical requirements are requirements placed on a system to ensure that it will be acceptable to its users and the general public.
A common problem with non-functional requirement is that they are sometimes difficult to verify. They may be written to reflect general goals of the customer such as ease of use, the ability of the system to recover from failure (or) rapid user response.

A non-functional requirement should be expressed quantitatively using metrics that can be objectively tested as followed:
	Property
	Measure

	Speed
	Proceed transactions / Event response time Size k bytes, No. of RAM chips

	Ease of use
	Training time, No. of help frames

	Reliability
	Mean time to failure, rate of failure occurrence Robustness Time to restart after failure

	Portability
	% of target dependent statements, No.of target systems.

Table 2.1 Metrics for Specifying Non-Functional Requirements
2.1.3 USER REQUIREMENTS
The user requirements for a system should describe the functional and non-functional requirements so that they are understandable by system users who don’t have detailed technical knowledge. It should specify the external behavior of the system and should avoid system design characteristics. User requirements are defined using natural language, tables and diagrams as these can be understood by all users. When user requirements are written in natural language they face several problems such as:
a. Lack of Clarity: It is sometimes difficult to use language in a precise, lucid and clear manner without making the document word and difficult to read.

b. Confusion: Functional requirements, non-functional requirements, system goals and design information may not be clearly distinguished.
c. Amalgamation: Several different requirements may be combined to express it as single requirement.
When user requirements include too much information, it limits the freedom of the system developer to provide innovative solutions to user problems and make the requirements difficult to understand.

Guidelines for writing user requirements
1. Invent a standard format and ensure that all requirement definitions
adhere to that format.
2. Use language consistently and to distinguish between
mandatory
and desirable requirements.

3. Use text highlighting (bold and italic) to identify key parts of the requirements.
4. Avoid the use of computer jargon as far as possible.
2.1.4 SYSTEM REQUIREMENTS
System requirements are more detailed descriptions of user requirements which is the basis for implementation of the system. It should be complete and consistent specification of the whole system. The system requirement specification may include different models of the system such as an object model (or) a data-flow model.

The system requirement should state what the system should do and not how it should be implemented. However to specify the system completely, it is virtually impossible to exclude all design information. There are several reasons for this:

1. An initial architecture of the system may be defined to help structure the requirements specification. The system requirements are organized according to the different sub system which make up the system.

2. The system must interoperate with other existing systems. These constrain the design and these constraints generate requirements for the new system.
3. The use of a specific design may be an external system requirement. Natural language is often used to write system requirement specification but it poses some grave problems. So we suggest some of the alternatives to the usage of natural language which add structure to the specification and which help to reduce the ambiguity.
Problems with NL specification

· Ambiguity
· The readers and writers of the requirement must interpret the same words in the same way. NL is naturally ambiguous so this is very difficult.
· Over-flexibility
· TThe same thing may be said in a number of different ways in the specification.
· Lack of modularisation
· NL structures are inadequate to structure system requirements.
Notations for Requirements Specification Structured Natural Language
The approach which depends on defining standard forms or templates to express the requirements/specification is called structured natural Lanuage.

Design description languages

It is similar to programming language but with operational system. This approach is not now widely used although it can be useful for interface specifications.

Graphics Notations

A graphical language, supplemented by text annotations is used to define the functional requirements for the system.

Mathematical Specifications
Notation based on mathematical concepts such as finite state machines (or) sets. These unambigious specifications reduce the arguments between customer and contractor about system functionality.
2.1.5 SOFTWARE REQUIREMENTS DOCUMENT
The software requirements document or software requirement specification is produced at the culmination of the analysis task. It is the official statement of what is required of the system developers.

Contents and Structure of software requirement specification

A number of different large organisations such us DoD (Department of Defence) and IEEE have defined standards for requirement document. The most widely known standard is IEEE/ANSI 830-1993 standard. The IEEE standard suggests the following structure.

1. Introduction
1.1 Purpose of the requirements document

1.2 Scope of the product.

1.3 Definitions, Acronyms and Abbreviations.
1.4 References

1.5 Overview of the remainder of the document.

2. General
Description

2.1 Product perspective

2.2 Product Functions
2.3 User Characteristics

2.4 General Constraints

2.5 Assumptions and Dependencies
3. Specific Requirements:

Involving functional, non-functional and interface requirements

4. Appendices

5. Bibliography and Index

The requirements document should be organized in such a manner that it aids validation and system design. For different projects, many of the sections may not be needed and can be omitted.
Users of Software Requirement Document

The requirements document has a diverse set of users as illustrated in Fig. 2.2.

Fig. 2.2 Users of Requirements Document

Characteristics of an SRS

To properly satisfy the basic goals, an SRS should have certain properties and should contain different types of requirements. A good SRS should be
1. Correct

–
If every requirement represents something required in the final

System
2. Complete

–
Ensures everything (ie.) every requirement is indeed specified.
3. Unambigious
–
Every requirement stated how one and only interpretation.
4. Verifaible

–
If and only if every stated requirement is verifiable.
5. Consistent

–
No Requirement conflicts with another.
6. Ranked for Importance and / or stability.
7. Modifiable
 –
An SRS is modifiable if its structure and style are such that any
necessary change can be made while preserving completeness and consistency
8. Traceable

–
All requirements are clear and facilitate referencing of other in
future development.

Components of an SRS

The basic issues all SRS must address are

1. Functionality
2. Performance
3. Design constraints imposed on an implementation

4. External Interfaces

Specification Languages

Some of the commonly used languages for requirements specification are
	1.
	Standard English
	Natural languages are widely used for specifying requirements but sometimes it may be imprecise and ambiguous.

	2.
	Regular Expression
	Used to specify the structure of symbol strings formally.

Used in compiler construction for recognition of symbols and tokens.

	3.
	Decision table
	Provide a mechanism for specifying complex decision logic.

	4.
	Finite state Automata
	An FSA can be specified pictorially or formally as grammar and Translation rules or transition tables. Used for specifying communication protocols.

2.1 REQUIREMENTS ENGINEERING ROCESS
Introduction
Requirements engineering process provides the appropriate mechanism for understanding what the customer wants, analyzing need, assessing feasibility, negotiating a reasonable solution, specifying the solution unambiguously, validating the specification and managing the requirements as they are transformed into an operational system.

[image: image2.emf]
[image: image3.emf]
Fig. 2.3 Requirements Engineering Process
The requirements engineering process can describe in five distinct steps.

· Requirements Elicitation
· Requirements Analysis and Negotiation
· Requirements Specification

· Requirements Validation
· Requirements Management
The requirements engineering activities are shown in Fig. 2.3. Software Requirements Specification (SRS):

The s/w requirement and specification focuses on what the system will do, not how the system will be implemented. It is produced as the culmination of the s/w requirements analysis task in the lifecycle model. You must analyze the information domain, the function, performance and behavior and interface requirement of the system. Software requirements can be specified in the following ways.

· representation format and content should be relevant to the problem

· Information contain within the specification should be nested.

· Representations should be revisable.

· s/w requirements specification produced at the culmination of the analysis task. This also states the goal and objectives of the s/w.

· information description provides a detailed description of the problem that the s/ w must solve.

· Functional description is a description of each function required to the solve the problem.
· Behavioral description section of the specification examines the operation of the s/ w as a consequence of external events and internally generated control characteristics.

· Validation criteria is the most important and ironically the most often neglected section of requirements specification.

· Functional vs. non functional requirements

(i) functional requirements: It provides statements of services the systems should provide, how the system should react to particular inputs and how the systems should behave in particular situations.

(ii) Non functional requirements: Refers to constraints on the services or functions offered by the system such as timing constraints, constrains on the development process, standards etc.,
The figure illustrates the relationship between the activities and also shows the documents produced at each stage of the Requirement Engineering (RE) process. In virtually, all systems however requirements change. The people involved develop a better more abstract features to specify the requirements by defining an operational model of the system. Not clear

2.2.1 Feasibility Study
The requirements engineering process should start with a feasibility study. The input to the feasibility study is an outline description of the system and how it will be used within an organisation.In other words; a feasibility study is an evaluation or analysis of the potential impact of a proposed project

A feasibility study is a short, focused study which aims at providing answers to the following questions:

1. Does the system contribute to the overall objectives of the organist ion?
2. Can the system be implemented using current technology and within given cost and schedule constraints?

3. Can the system be integrated with other systems which are already in place? If a system does not support these objectives, it has no real value to the business.

Carrying out a feasibility study involves

a. Information Assessment

b. Information Collection

c. Report Writing
Information Assesment

This phase identifies the information which is required to answer the three questions set out above. Once the information have been identified, the information sources has to be questioned to answer the following:

1. How would the organization cope if this system was not implemented?
2. What are the problems with current process and how would a new system help alleviate these problems?
3. What direct contribution will the system make to the business objectives?

4. Can information be transferred to and from other organizational systems?
5. Does the system require technology which has not previously been used in the organization?
6. What must be supported by the system and what need not be supported?

Information sources may include the managers of department where the system will be used, software engineers who are familiar with the type of system that is proposed, technology experts and end users of the system.
When the information is available, the feasibility study report is prepared. It should make a recommendation about whether or not the system development should continue. It may propose changes to the scope, budget and schedule of the system and suggest further high level requirement for the system.

2.2.2 Requirements Elicitation
The next phase followed by feasibility studies is requirements elicitation which involves asking the customer, user, others what the objectives of system is , what is to be accomplished, how the system (or) product fits into the needs of the business and how the system (or) product is to be used on a day-day basis.

Problems making requirements elicitation difficult

· Problem of scope: The customers/users specify unnecessary technical detail which confuse rather than clarifying system objectives (i.e.) the boundary of the system is defined.
· Problem of understanding: The customers/users have a poor understanding of the capabilities and limitations of computing environment, They don’t have a full understanding of problem domain. They have trouble in communicating needs to the system engineer or specify requirements that are ambigious (or) untestable.

· Problems of volatility: The requirements are not static and change over time.

· Problems of political factors: These may come from managers who demand specific system requirements because these allow them to increase their influence in the organization.
A generic process model of the elicitation and analysis process is shown in Fig. 2.4. The process activities are

· Domain Understanding: Analysts must develop their understanding of the application domain.
[image: image4.emf]
Fig. 2.4 Requirements Elicitation and Analysis Process

· Requirements Collection: Process of interacting with customers/users in the system to discover their requirements.
· Classification: It takes the unstructered collection of requirements and organises them into coherent clusters.

· Conflict Resolution: It is concerned with finding and resolving conflicts of multiple user requirements.

· Prioritization: In any set of requirements source will be more important than others. It involves interaction with customers/users to discover the most important requirement.
· Requirements Checking: The requirements are checked to discover if they are complete, consistent and in accordance with what customers really want from the system.

· Requirements Specification: A specification can be a written document, a graphical model, a formal mathematical model, a collection of usage scenario, a prototype (or) any combination of these.

· Requirements Documents: The software requirements document (sometimes called the Software Requirement Specification SRS) is the official statement of what is required of the system developers. It should include both the user requirements for a system and a detailed specification of the system requirement. Fig. 2.3 shows that requirement elicitation and analysis is an iterative process write continual feedback from each activity to other activities.

Guidelines for Requirements Elicitation
1. Assess the business and technical feasibility for the proposed system.
2. Identify the people who will help specify requirements and understand the organizational bias.

3. Identify domain constraints such as characteristics of the business environment specific to the application domain that limit the functionality (or) performance of the
system.

4. Define technical environment (eg. computing architecture, OS, telecommunication needs) into which the product will be placed.

5. Define one or more requirement elicitation methods such as interviews, focus groups, team meetings.
6. Identify ambiguous requirements as candidates for prototyping.
7. Create usage scenarios to help customers/users better identify key requirements.
2.2.3 Requirements Analysis & Negotiation
Once requirements have been gathered, the work products noted earlier form the basis for requirements analysis. Analysis categorizes requirements and organizes them into related subsets; explores each requirement in relationship to others; examines requirements for consistency, omissions, and ambiguity; and ranks requirements based on the needs of customers/users.
As the requirements analysis activity commences, the following questions are asked and answered:

· Is each requirement consistent with the overall objective for the system / product?

· Have all requirements been specified at the proper level of abstraction? That is, do some requirements provide a level of technical detail that is inappropriate at this stage?
· Is the requirement really necessary or does it represent an add-on feature that may not be essential to the objective of the system?
· Is each requirement bounded and unambiguous?
· Does each requirement have attribution? That is, is a source (generally, a specific individual) noted for each requirement?
· Do any requirements conflict with other requirements?
· Is each requirement achievable in the technical environment that will house the system or product?

· Is each requirement testable, once implemented?
It is not unusual for customers and users to ask for more than can be achieved, given limited business resources. It also is relatively common for different customers or users to propose conflicting requirements, arguing that their version is “essential for our special needs.”
The system engineer must reconcile these conflicts through a process of negotiation. Customers, users and stakeholders are asked to rank requirements and then discuss conflicts in priority. Risks associated with each requirement are identified and analyzed. Rough guestimates of development effort are made and used to assess the impact of each requirement on project cost and delivery time. Using an iterative approach, requirements are eliminated, combined, and/or modified so that each party achieves some measure of satisfaction.
2.2.4 Requirements Specification
In the context of computer-based systems (and software), the term specification means different things to different people. A specification can be a written document, a graphical model, a formal mathematical model, a collection of usage scenarios, a prototype, or any combination of these.

Some suggest that a “standard template” should be developed and used for a system specification, arguing that this leads to requirements that are presented in a consistent and therefore more understandable manner. However, it is sometimes necessary to remain flexible when a specification is to be developed. For large systems, a written document, combining natural language descriptions and graphical models may be the best approach. However, usage scenarios may be all that are required for smaller products or systems that reside within well-understood technical environments.
The System Specification is the final work product produced by the system and requirements engineer. It serves as the foundation for hardware engineering, soft ware engineering, database engineering, and human engineering. It describes the function and performance of a computer-based system and the constraints that will govern its development. The specification bounds each allocated system element. The System Specification also describes the information (data and control) that is input to and output from the system.

2.2.5 Requirements Validation

Requirements validation is the process of determining that the specification is consistent with the requirements definition (i.e.,) the validation makes sure that the requirements will meet the customer needs. Requirements validation examines to ensure that all system requirements have been stated unambigiously, that inconsistences, omissions and errors have been detected and corrected and the work products conform to the standards established for the process and the product.

During the requirements validation process, different types of checks should be carried out on the requirements in the requirement document. These checks include:

Validity Checks:
A user may think that a system is needed to perform functions. Systems have different users with different needs and any set of requirement is inevitable a compromise across the user community.

Consistency Checks:
Requirements in the document should not conflict (ie.) there should not be contradictory constraints or different description of the same system function.

Completeness Checks:
The requirements document should include requirements which define all functions and constraints intended by the system user.

Realism Checks:
Using knowledge of existing technology, the requirements should be checked to ensure that they can actually be implemented. It also takes into account of the budget and schedule for the system development.

Verifiability:
The system requirements should always be written so that they are verifiable.

There are a number of requirements validation techniques and which can be used conjuction or individually as shown in Table 2.2.
	Manual Techniques
	Reading

Manual Cross Referencing Interviews

Reviews Checklists

Manual models to check functions & relationships Scenarios

Mathematical proofs

	Automated techniques
	Automated cross referencing

Automated models to exact functions

prototypes

Table 2.2 Requirements Validation Techniques Requirements Reviews

A requirements review is manual process which involves multiple readers from both client and contractor staff checking the requirements document for anomalies and omissions. Requirements reviews can be informal or formal. The review team should check whether the requirements are complete and consistent. Reviews may also check for

1. Verifiability

2. Comprehensibility
3. Traceability
Prototyping:
In this approach to validation, an executable model of the system is demonstrated to end users and customers. They can experiment with the model to see if it meet their real needs.

Test Case Generation:
Requirements should be testable. If a test is difficult or impossible to design, this usually means that the requirements will be difficult to implement and should be reconsidered.

Automated Cross Referencing:
It uses processor to verify some properties of requirements. Any automated processing of requirement is possible if the requirements are written in a formal specification language or a language specifically designed for machine processing. They typically focus on checks for internal consistency and completeness which sometimes lead to checking of external completeness.

Scenarios:
Scenarios describe different situations of how the system will work once it is operational. Constructing scenarios is good for clarifying misunderstandings in the human- computer interaction area. They are of limited value for verifying the consistency and completeness of requirements.

Reading:
The goal in reading is to have something other than the author of the requirements read the requirements specification document to identify potential problems. Reading is effective only if the reader takes the job seriously and reads the requirements carefully. Reading is limited in scope for completeness and consistency errors, particularly for large software systems.

2.2.6 Requirements Management

Requirements management is a set of activities that help the project team to identify, control and track requirements and changes to requirements at any time as the project proceeds.
Like SCM requirements management begins with identification. Each requirement is assigned a unique identifier that might take the form

< requirement type > < requirement # > Requirement type may be

F = Functional requirement
D = Data requirement

B = Behavioural requirement
I =
Interface requirement

P = Output requirement

Requirements Classes

1. Enduring Requirements: Stable requirements which are derived from the core activity of the organisation and which
relate directly to
the domain of
the system.

2. Volatile Requirements: These requirements are likely to change during the system development or after the system has been put into operation.

a. Mutable Requirment: Requirements which change because of changes to the environment in which the organisation is operating.

b. Emergent Requirement: Requirements whcih emerge as the customers understanding of the system develops during the system development.

c. Consequential Requirement: Requirements which result from the introduction of the computer system which may change the organisations process and open up for new system requirements.

d. Compatibility Requirements: Requirements which depend onthe particular systems or business processes within an organisation.
Requirements Management Planning

As requirements management is very expensive and for each project planning is an external first stage which involves the following stages:

· Requirements Identification: Each requirements must be uniquely identified which can be cross referenced by other requirements and used in traceability assessements.
· Change Management Process: The set of activities which assesses the impact and cost of changes.

· Traceability Policies: Traceability is an overall property of a requirements specification which reflects the ease of finding related requirements. Some of the traceability information are :

1. Source traceability information: links the requirements to the customers/ stakeholders who proposed the requirements.

2. Requirements traceability information: links dependent requirements written the requirements document. It is used to assess how many requirements are likely to be affected by a proposed change and the extent of consequential requirement changes.

3. Design traceability information: links the requirements to the design modules where these requirements are implemented.
· Case Tool Support: Requirements management involves the processing of large amounts of information about the requirements (eg.) spread sheets and databases. Some of the ease tools are need for automated support and for the following purposes:

Requirements Storage: Requirements should be maintained in a secure, managed data store which is accessible to everyone involved in requirements engineering process.

Change Management: Requirements change management should be applied to all proposed changes to the requirements as illustrated in the Fig. 2.5.

[image: image5.emf]
Fig. 2.5 Requirements Change Management

Problem analysis and change specification

During this stage, the problem or the change proposal is analysed to check whether it is valid.

Change analysis and costing: The effect of the proposed change is assessed using traceability information. The cost incurred by both modifications of requirements documents, system design and implementation is analysed and a final decision is made.

Change Implementation: The requirements document the system design and implementation is modified.

2.3 CLASSICAL ANALYSIS

2.3.1 Introduction

· Specification document must satisfy two mutually contradictory requirements

· Must be clear and intelligible to client

· Client probably not a computer expert

· Client must understand it in order to authorize

· Must be complete and detailed

· Sole source of information available to the design team

· Specification document must be in a format that is
· Sufficiently nontechnical to be intelligible to client
· Yet precise enough to result in a fault-free product

· Analysis (specification) techniques are needed

· Classical (structured) analysis
· Object-oriented analysis
2.3.1.1 Products of Classical Analysis Workflow
2.3.1.2 The Specification Document
· Specification document is a

· Detailed description of what system will do

· Faults in specification lead to faults in final software, so

· Considerations:

· Feasibility - can software be built as specified?
· Q: How to check specification correctness?

· Specification document must be
· Informal enough for client to understand, but

· Formal enough for developers, and be contractually binding.

· Free of omissions, contradictions, ambiguities

· Acceptance
Criteria
determinable as
part
of
Specification

· Can
even
begin

(some)
test
case
development
based
on Requirements Document without
yet
having any code!

· If product passes tests, deemed to satisfy specifications

2.3.1.3 Software Specification Methods

The Classification of specification techniques are

Informal methods: Written in a natural language like English.

Semiformal methods: Techniques between informal and formal is known as semiformal methods. Techniques such as Structured Systems Analysis & Entity-Relationship Modeling (ER Diagrams).

Formal methods: Techniques such as Petri nets, Finite State Machines (FSMs) and Z.

2.3.1.4 Structured Systems Analysis
· Use of graphics to specify software

· Important technique of the 1970s
· A few popular techniques are DeMarco, Gane and Sarsen & Yourdon and Constantine

· All are equivalent

· All are equally good

Data Flow Diagram-Foundation of Gane and Sarsens Structured System Analysis

· Graphical Notation used to Describe how data flows between Processes in a System:

· Use Notation that Represents Functional Processing, Data Stores and Data Movements (flows) Between Sequences of Functional Units.

· Focus is on “What Happens, Not How It Happens”.

· Development Proceeds Stepwise

· Start with “Context Level” diagram, and then refine.
Sallys Software Shop Mini Case Study - An Example Using DFDs

· Sallys Software Store buys software from various suppliers and sells it to the public. Popular software packages are kept in stock, but the rest must be ordered as required. Institutions and corporations are given credit facilities, as are some members of the public. Sallys Software Store is doing well, with a monthly turnover of 300 packages at an average retail cost of $250 each. Despite her business success, Sally has been advised to computerize. Should she?

· A better question

· What business functions should she computerize?

· Accounts
payable

· Accounts
receivable

· Inventory
· Still better

· How?
Batch, or online? In-house or outsourcing?

· The fundamental issue

· What is Sallys objective in computerizing her business?

· Because she sells software?

· She needs an in-house system with sound and light effects.
· Because she uses her business to launder “hot” money?
· She needs a product that keeps five different sets of books, and has no audit trail.
· We assume: Sally wishes to computerize “in order to make more money”
· We need to perform cost–benefit analysis for each section of her business.

· The danger of many standard approaches

· First produce the solution and then find out what the problem is!

· Gane and Sarsen€s method
· Nine-steps method
· Stepwise refinement is used in many steps

To perform the Structures System Analysis the nine steps are followed:

1. Draw the data flow diagram

2. Decide what sections to computerize and how (batch or online)
3. Determine the details of the data flows
4. Define the logic of the processes

5. Define the data stores

6. Define the physical resources

7. Determine the input-output specifications
8. Perform the sizing
9. Determine the hardware requirements

Step 1: Draw the Data Flow Diagram (DFD)

· A pictorial representation of all aspects of the logical data flow

Logical data flow — What happens Physical data flow — How it happens

· Any non-trivial product contains many elements

· DFD is
developed by stepwise refinement

[image: image6.emf]
Fig. 2.6 Four Basic Symbols of DFD

· First refinement
· Infinite number of possible interpretations.
[image: image7.emf]
2.7 DFD Level 0-Sally€s
Second refinement

Pending Order is scanned daily.

[image: image8.emf]
Fig 2.8 DFD Level 1 - Sally€s Software Shop

· Portion of third refinement
· The final DFD is larger
· But it is easily understood by the client
[image: image9.emf]
Fig 2.9 DFD Level 2 - Sally€s Software Shop

· When dealing with larger DFDs

· Set up a hierarchy of DFDs

· A box becomes a DFD at a lower level
Step 2: Decide what sections to computerize and how (batch or online)

· It depends on how much client is prepared to spend

· Large volumes, tight controls
· Batch

· Small volumes, in-house microcomputer

· Online

· Cost/benefit analysis is applied.
Step 3: Determine the details of data flows

· Determine the data items for each data flow.

· Refine each flow stepwise. Example;

order: order_identification customer_details package_details

· We need a data dictionary for larger products.
	Name of Data element
	Description
	Narrative

	order
	Record comprising field order_identification customer_details
customer_name
customer_address

.....

package_details
package_name
package_price
	The field contain all details of an order

	order_identification

verify_order_is_valid
	12 digit integer

Procedure
input parameter
order output parameter number_of_errors
	Unique number generated by proceduregenerate_oder_number.
The first 10 digits contain the order number itself, the last 2 digits are check digits.

This procedure takes order as input and checks the validity of every field, for each error found, an approximate message is displayed on the screen (the total number of errors found is returned in parameter number_of_errors)

Fig. 2.10 Sample Data Dictionary Entries
Step 4: Define logic of processes

· We have process give educational discount
· Sally must explain the discount she gives to educational institutions.
· 10% on up to 4 packages

· 15% on 5 or more

· Translate this into a decision tree

[image: image10.emf]
· The advantage of a decision tree

· Missing items are quickly identified.
Step 5: Define data stores

· Define the exact contents and representation

· COBOL: specify to pic level
· Ada: specify digits or delta
· Specify where immediate access is required

· Data immediate-access diagram (DIAD)

[image: image11.emf]
Step 6: Define physical resources

· For each file, specify
· File name
· Organization (sequential, indexed, etc.)

· Storage medium

· Blocking factor

· Records (to field level)
· Table information, if a DBMS is to be used

Step 7: Determine input-output specifications

· Specify

· Input forms
· Input screens

· Printed output

Step 8: Determine sizing

· Obtain the numerical data needed in Step 9 to determine the hardware requirements

· Volume of input (daily or hourly)
· Size, frequency, deadline of each printed report

· Size, number of records passing between CPU and
· mass storage

· Size of each file
Step 9: Determine hardware requirements

· Mass storage requirements

· Mass storage for back-up

· Input needs

· Output devices
· Is the existing hardware adequate?

· If not, recommend whether to buy or lease additional hardware However

· Response times cannot be determined
· The number of I/O channels can only be guessed

· CPU size and timing can only be guessed

· Nevertheless, no other method provides these

· Data for arbitrary products

Overall

· The method of Gane and Sarsen/De Marco/ Yourdon has resulted in major improvements in the software industry.
2.4 Structured Systems Analysis : The MSG Foundation Case Study

[image: image12.emf]
Fig. 2.11 The MSG Foundation DFD

· As reflected in the DFD, the user can perform three different types of operations:
1. Update investment data, mortgage data, or operating expenses data:

· The USER enters an update request

· To update investment data, process perform_selected_update solicits the updated_investment_details from the USER, and sends then to the INVESTMENT_DATA store of data

· Updating mortgage data or expenses data is similar
2. Print a listing of investments or mortgages:

· To print a list of investments, the USER enters an investment_report_request. Process generate_listing_of_investments then obtains investment data from store INVESTMENT_DATA, formats the report, and then prints the report

· Printing a listing of mortgages is similar
3. Print a report showing available funds for mortgages for the week:

· The USER enters a funds_availability_report_request.
· To determine how much money is available for mortgages for the current week, process compute_availability_of_funds_and_generate_funds_report then obtains (see next slide):
· Investment_details from store INVESTMENT_DATA and computes the expected total annual return on investments
· Mortgage_details from store MORTGAGE_DATA and computes the expected income for the week, expected mortgage payments for the week, and expected grants for the week

· Annual_operating_expenses from store EXPENSES_DATA and computes the expected annual operating expense

· Process compute_availability_of_funds_and_generate_funds_report then uses these results to compute available_funds_for_week, and format and print the report

2.4 Data Dictionary
The data dictionary is an organized testing of all data elements that are relevant to the system so that both the user and system analyst will have a common understanding inputs, outputs, components of stores and intermediate calculations. It is proposed as quasi- formal grammar during structured analysis and may contain the following information.
· Name of the data item.
· Aliases (Other names for items)

· Description/Purpose – a notation for representing its goal or content.
· Related data items
· Range of value
· Data structure definition / form
· Where used / how-used (eg.) input to the process, output from the process, as a store and external entity.
· Supplementary information – data types, preset values, restrictions or limitations.
A data dictionary is simplistically an alphabetic list of names which are included in different models of the system.

The mathetical operation used in data dictionary is defined in Table 2.3.
	S.No.
	Notation
	Meaning

	1.
	X = a+b
	X consists of data elements a & b.

	2.
	X = [a/b]
	X consists of either data elements a or b.

	3.
	X = a
	X consists of an optional data element a.

	4.
	X = Y{a}
	X consists of Y or more occurrence of data element a.

	5.
	X = {a}z
	X consists of Z or fever occurrences of data element a.

	6.
	X = y{a}z
	X consists of some occurrence of data element a which are between Y and Z.

Table 2.3 Data dictionary Notation and Mathematical Operation

To illustrate the use of data dictionary, we refer to a data item telephone number which consists of

1. 8 digit local number

2. 3 digit extension

3. 25 digit long distance carrier sequence

The data dictionary provides us with the precise definition of the telephone number as follows.

Name
:
 telephone number aliases
:
none
where used/ how used: assess against set up (output) dial phone (input)

Description

telephone number
=
[local number / long distance number]
local number
=
prefix + access number

long distance number
=
1 + area code + local number
area code
=
[800/888/561]
prefix
=
* a three digit number that never starts with 0 or 1*
access number
=
* any four number string*

For large computer systems, the data dictionary grows rapidly in size and complexity. In fact, it is extremely difficult to maintain a dictionary manually. For these reasons, CASE tools should be used.
The data dictionary defines information items unambiguously. Most case tools which support system modeling also include support for data dictionaries.

Advantages

1. Mechanism for name management. The data dictionary software can check for name uniquenss and tell requirements analysts of name duplications. The names should be used consisting and should not clash.

2. It serves as a store of organizational information that can link analysis, design, implementation and evolution.

3. The data dictionary software might be integrated with other tools so that dictionary creation is partially automated.

4. Design the software and test cases.

2

Non Functional Requirements

External Requirement

Organizational Requirements

Product Requirements

Use the requirements to help understand the system and the relationship between its parts

System Maintenance Engineers

Use the requirements to develop validation tests for the system

System test Engineers

Use the requirements to understand what system is to be developed.

System Engineers

Use the requirements document to plan a bid for the system and to plan system development process.

Specify the requirements and read them to check that they meet their needs. They specify changes to the requirements

System Customers

